In most animal species, the mature sperm nucleus is characterized by an extreme level of DNA compaction achieved after the massive replacement of somatic-type histones with sperm-specific nuclear basic proteins (SNBPs) (Lewis et al. 2003; Miller et al. 2010; Ward 2010; Kanippayoor et al. 2013). In mammals, the bulk of sperm chromatin is organized with two small protamines (Protamine 1 and 2) highly enriched in arginine residues (Balhorn 2007). During spermiogenesis, histones are massively replaced with protamines. A previous report showed that Drosophila males homozygous for a genomic deletion covering several genes including the protamine-like genes Mst35Ba/b are surprisingly fertile. Here, we have precisely deleted the Mst35Ba locus by homologous recombination, and we confirm the dispensability of Mst35Ba/b for fertility.

ABSTRACT During spermiogenesis, histones are massively replaced with protamines. A previous report showed that Drosophila males homozygous for a genomic deletion covering several genes including the protamine-like genes Mst35Ba/b are surprisingly fertile. Here, we have precisely deleted the Mst35Ba locus by homologous recombination, and we confirm the dispensability of Mst35Ba/b for fertility.

KEYWORDS Drosophila protamine-like spermiogenesis sperm Mst35B
canoe stage spermatid nuclei of wild-type males but not those of \(\Delta Mst35B\) homozygous males (Figure 1C). At later stages of spermiogenesis, the highly compacted chromatin of spermatids is no longer accessible to antibodies (Bonnefoy et al. 2007), thus explaining the absence of staining beyond the canoe stage in wild-type testes. In addition, another anti-Mst35B antibody raised against the whole Mst35Bb recombinant protein allowed us to confirm the absence of Mst35B proteins from \(\Delta Mst35B\) testicular protein extracts (Figure 1D).

As expected, homozygous \(\Delta Mst35B\) males were fully viable (not shown) and at least partially fertile (see paragraphs to follow), thus confirming the dispensability of Mst35B proteins for male fertility. Spermiogenesis (the differentiation of postmeiotic spermatids) in mutant males nevertheless appeared severely disorganized, with many elongating spermatids showing abnormal nuclear morphology (Figure 2, A–C). The spermiogenesis defects were similar in homozygous \(\Delta Mst35B\) and trans-heterozygous \(\Delta Mst35B/prot\Delta\) males, ruling out the possibility that the phenotypes associated with \(\Delta Mst35B\) were caused by a second-site mutation. In both allelic combinations, affected spermatid nuclei typically appeared bent compared with control spermatids, with the anterior tip of the nucleus sometimes folded into a hook-like structure (Figure 2, D and E). It is likely that the concentration of chromatin at one end of mutant spermatid nuclei observed by Rathke et al. (2010) actually correspond to folded nuclear extremities. A large proportion of mutant spermatids were scattered along the cysts instead of remaining tightly grouped in bundles of 64 nuclei, suggesting that they were progressively eliminated during the course of spermiogenesis (Figure 2, B and C). Accordingly, mutant males stored significantly less gametes in their seminal vesicles compared with control males (Figure 3E). Interestingly, however, we did observe morphologically aberrant mature gametes stored in the seminal vesicles of homozygous \(\Delta Mst35B\) and \(\Delta Mst35B/prot\Delta\) males (Figure 3, A–C), in sharp contrast to previous observations (Rathke et al. 2010). A transgene expressing Mst35Ba-EGFP rescued the abnormal nuclear shaping of \(\Delta Mst35B\) spermatids, thus confirming that this phenotype is actually caused by the loss of \(Mst35B\) genes (Figure 3D). However, a fraction of spermatids was still eliminated in rescued animals (Supporting Information, Figure S1), suggesting that the presence of a relatively large green fluorescent protein tag perturbs the functionality of the recombinant protein. Alternatively, both Mst35Ba and Mst35Bb proteins could be required for proper packaging of sperm DNA. In addition, we confirmed that a transgene expressing Mst77F-EGFP was normally incorporated into the chromatin of mutant gametes but failed to rescue the phenotype (Figure 3B). Finally, using a specific antibody (Figure S2), we also verified that the transition protein Tpl94D (Rathke et al. 2007) was normally incorporated in mutant spermatids at the histone-to-proteamine transition (Figure 2, D and E), confirming that the nuclear defects in mutant spermatids appear after this stage.

Although the quantity and quality of gametes were affected by the loss of \(Mst35B\) genes, homozygous \(\Delta Mst35B\) and \(\Delta Mst35B/prot\Delta\) males were nevertheless fertile, in agreement with the study by Rathke et al. (2010). In fact, the impact of \(\Delta Mst35B\) on male fertility was only revealed when mutant males were allowed to mate with a large excess of virgin females (1:10; Figure 3F) but not with a 1:1 sex ratio (not shown). In the presence of a large excess of females, the observed reduction of fertility is likely explained by the limiting amount of sperm produced by mutant males (Figure 3E).
The organization of sperm chromatin in animals is poorly understood and most of our knowledge comes from studies on human or other mammalian species. *Drosophila* is an interesting, alternative model for the study of sperm chromatin at the functional level. The generation of a precise deletion allele of both protamine-like genes *Mst35Ba/b* provides an ideal tool for the functional study of *Drosophila* SNBPs. The fertility of *ΔMst35B* males reveals the extraordinary plasticity of the *Drosophila* sperm nucleus, which grossly maintains its architecture, motility and ability to fertilize eggs in the absence of what is considered a major component of its chromatin. It is likely that additional SNBPs compensate for the loss of the protamine-like proteins. In fact, we already know that the loss of *Mst35Ba/b* proteins does not perturb the incorporation of *Mst77F* in spermatid nuclei (this work and Rathke et al. 2010). *Mst77F*, which was originally identified in a genetic screen for β2 tubulin interactors (Fuller et al. 1989), is related to the mammalian spermatid-specific histone H1-like protein HILS1 (Iguchi et al. 2004; Yan et al. 2003). Interestingly, the *D. melanogaster* genome contains several recent copies of *Mst77F* on the Y chromosome, and eight of these *Mst77Y* genes are most likely functional (Russell and Kaiser 1993; Krsticevic et al. 2010). It has been proposed that *Mst77F* is essential for male fertility (Rathke et al. 2010), but this conclusion is based on the analysis of the antimorphic point mutation *Mst77F1* (see Krsticevic et al. 2010). Future work should aim at clarifying the nuclear function of *Mst77F/Y* proteins to determine if they can indeed maintain a sperm chromatin structure compatible with male fertility in the absence of *Mst35B* proteins.

ACKNOWLEDGMENTS

We thank Renate Renkawitz-Pohl and Cristina Rathke for fly stocks. This work was supported by research grants from the French ANR (ZygoPat-ANR-12-BSV6-0014), the Fondation ARC pour la Recherche sur le Cancer (SFI20121205765), and the NSF Frontiers in Integrative Biological Research (EF-0328363). S.T. is supported by a doctoral fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche. S.K. is supported by a fellowship from the Uehara Memorial Foundation.
LITERATURE CITED

Communicating editor: J. Brill