Toucan Protein Is Essential for the Assembly of Syncytial Mitotic Spindles in *Drosophila Melanogaster*

Alain Debec, Muriel Grammont, Guy Berson, Bernard Dastugue, William Sullivan, and Jean-Louis Couderc

1Observatoire Océanologique, Laboratoire de Biologie du Développement, Université Pierre et Marie Curie/CNRS, Villefranche-sur-Mer, France
2Laboratoire de Biochimie, UMR 384 INSERM, Clermont-Fd, France
3Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz, CA

Received 22 October 2001; Accepted 7 November 2001

Summary: The toc gene of *Drosophila melanogaster* encodes a 235-kD polypeptide with a coiled-coil domain, which is highly expressed during oogenesis (Grammont et al., 1997, 2000). We now report the localization of the Toucan protein during early embryonic development. The Toucan protein is present only during the syncytial stages and is associated with the nuclear envelope and the cytoskeletal structures of the syncytial embryo. In anaphase A, Toucan is concentrated at the spindle poles near the minus end of microtubules. This microtubule association is very dynamic during the nuclear cell cycle. Mutant embryos lacking the Toucan protein are blocked in a metaphase-like state. They display abnormal and nonfunctional spindles, characterized by broad poles, detachment of the centrosomes, and failure of migration of the chromosomes. These results strongly suggest that Toucan represents a factor essential for the assembly and the function of the syncytial mitotic spindles.

INTRODUCTION

Understanding mitotic spindle assembly represents a major issue of cell biology. In recent years it has become obvious that this phenomenon relies on cooperative mechanisms between microtubule-based motors and their associated proteins (Heald et al., 1996, 1997; Gaglio et al., 1997; Nedelec et al., 1997; Walczak et al., 1998; Heald, 2000; Sharp et al., 2000b). The general idea (reviewed in Karsenti et al., 1996) has emerged that chromatin stabilizes microtubules and that self-organization of the poles is achieved by focusing free microtubule ends with minus end motors. Moreover, proteins such as NuMA (Dionne et al., 1999; Gaglio et al., 1995; Merdes et al., 1996) could belong to a complex involved in maintaining the organization of the minus ends of the spindle microtubules into a morphologic pole.

The establishment of spindle bipolarity requires multiple microtubule-based motor activities (Gaglio et al., 1996; Walczak and Mitchison, 1996; Walczak et al., 1998; Sharp et al., 1999b; Sharp et al., 2000a). Depending on the cell type, different combinations of motors and associated proteins are probably needed to organize a mitotic spindle.

The early embryo of *Drosophila melanogaster* represents an interesting case of mitotic spindle organization. This stage is characterized by a rapid succession of 13 metasynchronous divisions occurring in a syncytium. During these divisions, the mitotic spindles are assembled and disassembled with extraordinary speed. A major question is whether these syncytial mitotic spindles, relying only on maternal contributions, are different from the later ones of the cellularized embryo. As fast DNA synthesis at this stage requires multiple replication origins, one can imagine that the extremely rapid assembly/disassembly of the syncytial spindles needs special factors such as specialized forms of kinesins or centrosomal proteins. For example, two gamma-tubulins exist in *D. melanogaster*, and the syncytial mitoses are driven by only one isoform of maternal origin, the γTub37CD (Tavosanis et al., 1997; Wilson and Borisy, 1998).

As a candidate for a factor with a specific role in mitosis during the syncytial phase, Toucan is particularly interesting. The toucan locus has been characterized as a recessive female sterile mutation in an enhancer trap mutagenesis. From sequence analysis, *toucan* is predicted to encode a 235-kD protein with a P-loop domain, several putative phosphorylation sites and a coiled-coil region in the C-terminal domain. *Toucan* is expressed and required in germline cells (Grammont et al., 1997). Using specific antibodies against Toucan protein, Gram-
mont et al. (2000) have shown that its localization in the oocyte is microtubule dependent. Moreover, embryos from homozygous toc mothers are arrested very early in their development (Grammont et al., 1997).

We have investigated the precise localization of Toucan in early embryos and examined the consequence of Toucan absence on the syncytial mitoses. We report here that Toucan is present exclusively during the syncytial stage. Toucan is a very unstable protein, possibly degraded by the proteasome pathway. Toucan associates with the nuclear envelope and the cytoskeletal structures of the syncytial embryo, especially the mitotic apparatus. The localization of Toucan along spindle microtubules is not uniform and presents an extremely dynamic pattern during the course of mitosis. Mutant embryos lacking Toucan protein display abnormal and nonfunctional spindles, characterized by broad poles, detachment of the centrosomes, and lack of migration of the chromosomes. Altogether these results strongly suggest that Toucan represents a factor essential for the assembly and the function of the mitotic spindle during the early embryogenesis of D. melanogaster.

RESULTS

The Toucan Protein Is Present during All the Syncytial Divisions of the Embryo

Antibodies previously used to detect the Toucan protein during oogenesis (Grammont et al., 2000) were used on early embryos. In an extract made from 0–1 h wild-type embryos, these antibodies recognize a prominent band at Mr 235 000 on a Western blot (Fig. 1). The level of this protein is reduced in embryos from heterozygous females and absent in embryos from homozygous toucan mutants. Using these specific anti-Toc antibodies we have studied by whole mount antibody staining and Western blotting analysis the abundance of the Toucan protein during embryonic development (Figs. 2 and 3).

At the end of oogenesis, a weak accumulation of the Toucan protein is detected in the oocyte nucleus (Grammont et al., 1997). A similar pattern is observed in the nucleus of the zygote before and after (Fig. 2A) the first syncytial division. During the internal nuclear division stages (Fig. 2B–D), all the nuclei are strongly stained and a weak staining is detected in the cytoplasm. When the nuclei migrate to the cortex (Fig. 2E) and during the cortical nuclear division stages (Fig. 2F), the Toucan protein is strongly detectable in the nuclei, whereas the cytoplasm shows a very weak staining. At the 13th division (Fig. 2G), the level of Toucan protein decreases and the protein becomes undetectable by the beginning of the 14th division stage (Fig. 2H), when the cellularization process initiates.

We have also measured Toucan protein levels in precisely staged interphase embryos during all the syncytial divisions (Fig. 3). The Toucan protein is detected at the expected size at Mr 235,000. The Toucan protein is present in stage 1 embryos and its level rises during the very first cycles, stays high until cycle 11, and then declines to disappear completely at interphase 14.

To summarize, we found that the Toucan protein is expressed during all syncytial divisions, where it associates with the nuclei, and is degraded very quickly at the end...
of the syncytial divisions. These results are consistent with the previous finding of a maternal store of toc mRNA in the oocyte (Grammont et al., 1997).

Rapid Degradation of Toucan in vitro Is Inhibited by a Proteasome Inhibitor

We prepared soluble protein extracts from early embryos (0–1 h) under conditions that depolymerize microtubules to be able to analyze the copurification of Toucan protein with tubulin in vitro. Unfortunately, Toucan was not present in the supernatants of such extracts (data not shown), indicating that this protein is insoluble. This prevented us from testing the binding of the Toucan protein to the microtubules in vitro.

Toucan was found to be very unstable in these conditions. We observed that Toucan is completely degraded within 2 min when embryos are solubilized in a nonde-naturing buffer in the absence of protease inhibitors, although the amount of tubulin is unchanged (Fig. 4). This degradation of Toucan is reduced when aprotinin (10 μg/ml) and leupeptin (10 μg/ml) are added prior to solubilization and is completely inhibited by the leupeptin analog MG132 (Affinity Research Products), a specific proteasomal inhibitor. These data indicate that Toucan is a very unstable protein.

In the Early Embryo, Toucan Is Associated with Microtubular Structures

We have performed a detailed analysis of the localization of Toucan in Drosophila wild-type embryos by confocal immunofluorescence microscopy. In agreement with our previous quantitative analysis, a strong labeling was detected during the syncytial stages (nuclear divisions 1–13), but after cellularization, the embryos presented only a weak and nonspecific signal.

We found that the Toucan protein is mostly associated with microtubular structures during all phases of the mitotic cycle (Fig. 5). During interphase (Fig. 5A), the Toucan protein is associated with the nuclei. The confocal analysis clearly demonstrates that Toucan is localized to the nuclear envelope. Both centrosomes, which are attached to the nuclear envelope, are strongly labeled. At prophase (Fig. 5B), Toucan is found on the two half-spindles generated by the centrosomes. Toucan labeling follows the progressive establishment of the spindle. During metaphase (Fig. 5C), Toucan is found on the entire spindle, which is heavily stained.

Centrosomes are only weakly labeled. During anaphase, the localization of Toucan is particularly dynamic (Fig. 5D): Toucan is associated preferentially with the bundles of spindle microtubules and appears concentrated at the spindle poles close to the centrosomes. The microtubules asters were not labeled, which means that Toucan is not systematically associated with tubulin. Toucan accumulates also in the spindle midzone, between the two chromosome sets, in the region of antiparallel microtubules. During telophase (Fig. 5E), Toucan is concentrated mostly in the midbody and at the centrosomes. At this stage, microtubule asters are well developed, but they are not labeled with the anti-Toucan antibody. The localization of Toucan around the centrosomes expands toward the reforming nuclear envelope, forming a hemispheric cap. The embryo cytoplasm contains much more labeled material, in the form of diffuse material and many small granules, than during other stages.

Toucan Is Essential for Spindle Assembly and Function

Embryos from homozygous toucan mothers arrest their development very early, before nuclear migration. We examined by confocal analysis such embryos after fixation and staining with antihistone and anti-CP190 (Whitfield et al., 1995) antibodies. Syncytial nuclear divisions stop after only a few rounds (Fig. 6). All embryos are arrested in a metaphase-like state, with condensed chromosomes and acentrosomal spindles. On 200 mutant embryos examined, the most advanced stage contained only 16 mitotic spindles. Some embryos are arrested at the first mitosis (Fig. 6A), but most of them are stalled later, after two or three nuclear divisions. A de-
tained examination reveals a continuum of alterations of the mitotic spindles, which we interpret as the progressive disorganization of the mitotic apparatus after the arrest in pseudometaphase.

These spindles show broad poles, which lack a centrosome. Free centrosomes are detected in the cytoplasm at some distance of the spindles (Fig. 6B, C). In older embryos (4–5 h), centrosomes are still found in small number, suggesting an arrest or delay of free centrosomes duplication.

The spindle microtubules aspect is itself very peculiar: the tubulin staining appears very homogeneous, as if microtubule bundles no longer exist (Fig. 6C, D). The chromosomes lie in the middle of the spindle, in a metaphase plate configuration and appear to be overcondensed. No migration of chromosomes toward the poles is observed. In some cases, in which the mitotic apparatus is probably stalled for a longer time, the pseudometaphase plate collapses into a group of chromosomes with disorganized microtubule arrays.

In order to follow the altered divisions in real time, we injected fluorescently labeled tubulin into very young embryos (0–1 h collection) derived from toc/toc mothers. Time-lapse recordings of these embryos confirm that spindles are blocked for 15–20 min, and eventually collapse. Fig. 7 depicts a typical mutant embryo a few

FIG. 5. Localization of Toucan protein during the syncytial stages in wild-type embryos. (A) Interphase. Toucan localizes to the centrosomes and the nuclear envelope (left: Toucan; middle: α tubulin; right: merge). (B) Prophase. Toucan is found on the two half-spindles (left: Toucan; middle: α tubulin; right: merge). (C) Metaphase. Toucan is associated with the entire spindle (left: Toucan; middle: DNA; right: merge). (D) Anaphase. Toucan accumulates at the spindle poles, under the centrosomes (insert: enlarged view of the localization of Toucan at the spindle pole; left: Toucan; middle: α tubulin; right: merge). (E) Telophase. Toucan accumulates at the midbody and in the centrosome area (left: Toucan; middle: DNA; right: merge). Bars = 10 μm.
minutes after injection of fluorescent tubulin. The spindle is bipolar but not biconical, and centrosomes quickly detach from the poles. The spindle is stalled in a pseudo-metaphase state and stays the same size. The pole-to-pole elongation typical of anaphase never occurs. After about 15 min in this state, the spindle progressively disassembles and finally disappears, leaving an unorganized mass of microtubules that disperses in the cytoplasm.

We conclude from these confocal analyses of fixed and live embryos that Toucan is essential for the assembly and the function of the syncytial mitotic spindles. Remarkably, this function is probably not required for the late divisions of the embryo.

DISCUSSION

Toucan Is Strictly Developmentally Regulated

Western blot analysis of staged embryos and global immunostaining reveal that Toucan is present during all of the syncytial stage. This is consistent with *toucan* mRNA accumulation in the oocyte (Grammont et al., 1997). Specific anti-Toc antibodies detected one band of Mr 235,000 during all nuclear cycles. The level of Toucan protein diminishes during cycles 12-13 and falls to a very low level during interphase 14. Toucan is not detected in embryos after cellularization. This rapid disappearance of Toucan can hardly be explained by a dilu-
tion of the maternal store and likely relies on a specific degradation mechanism of Toucan. Toucan protein is unstable and is degraded very quickly in the absence of protease inhibitor. This degradation is strongly prevented by a proteasome inhibitor. The very rapid changes in Toucan subcellular localization during the different stages of the syncytial mitoses may involve a rapid degradation of the Toucan protein, triggered by the proteasome pathway. Moreover the presence of four PEST-like motifs in the N-terminal part of the Toucan protein could contribute to its instability and insure its rapid degradation. This degradation could be regulated by phosphorylation of the cdc2 phosphorylation sites that are present in Toucan, coupling its degradation with the cell cycle.

The present confocal analysis reveals that in the early embryo, Toucan is associated with the nuclei and with microtubular structures, showing a very dynamic pattern. Toucan associates with three kinds of organelles: the nuclear envelope, the centrosome, and the mitotic spindle.

During Interphase Toucan Is Associated with the Nuclear Envelope and the Centrosomes

During telophase and all of interphase, Toucan is found associated with the cytoplasmic side of the nuclear envelope. Such localization is particularly interesting because ultrastructural observations have detected filamentous structures that link the centrosomes and the nuclei (Debec et al., 1999). Through its coiled-coil domain, Toucan could associate with other proteins and form a kind of matrix in order to couple the nuclei to the cytoskeleton. Such structures could also ensure the proper migration of centrosomes along the surface of the nucleus (Robinson et al., 1999).

Toucan is associated with the centrosome during most of the nuclear cycle, and particularly during all the interphase period, and until prophase. However, during metaphase and anaphase there is only a faint labeling of centrosomes. Toucan reassociates with the centrosomes during telophase. It seems therefore that Toucan is not a core component of the centrosome and is probably not involved in the microtubule nucleation function that the centrosomes play at these mitotic stages.

Toucan Is Essential for the Assembly and Function of the Syncytial Spindles

During all phases of the mitosis, Toucan is redistributed very quickly to different parts of the spindle. In prophase, Toucan is associated with microtubules, more specifically with the + ends of the assembling spindle. During metaphase, however, Toucan is found throughout the entire spindle. At anaphase, Toucan concentrates at the poles, just under the centrosomes and also in the midzone of the spindle. During telophase, Toucan is still found in the midbody and accumulates in the centrosomal region, forming two opposite caps. Thus the relationship between Toucan and microtubules is not uniform; in particular, astral microtubules are not labeled once the spindle is fully established. All these observations demonstrate a highly dynamic redistribution of Toucan along microtubules.

All the proposed roles for Toucan based on analysis of its localization in wild-type embryos are corroborated by the mitotic defects occurring in embryos issued from homozygous toc/toc mothers. These embryos lack any Toucan protein, as confirmed by immunoblot analysis. They present aberrant mitotic spindles and they are all blocked in a pseudometaphase stage. This phenotype indicates that the main function of Toucan occurs during mitosis. It is clear that Toucan is essential for spindle morphogenesis and function. The defective spindle morphology in toc mutant embryos gives some clues to the possible role of Toucan. The spindle poles are very broad. There is still a bipolarization of the spindle (i.e., no multiple poles are observed), but the normal biconical shape is never attained and the spindle remains barrel shaped. The overall morphology of these spindles recalls acentrosomal spindles, observed for example in Xenopus egg extracts (Heald et al., 1996) or in Drosophila cell line 1182-4 (Debec et al., 1995). This strongly suggests that Toucan is involved in the organization and/or stabilization of the poles of the spindle. The centrosomes detach from the poles and are found at some distance from the spindle. Therefore Toucan may also function to tether the centrosomes to the spindle poles. Spindle microtubules appear uniform, no microtubule bundles are observed. This suggests that Toucan could cross-link microtubules and assemble them into bundles. This property of Toucan could explain the presence of Toucan in the zone of antiparallel microtubules in the mid-spindle during anaphase, as well as its presence in the midbody at telophase.

What Family for Toucan?

Taken together, these observations define the main characteristics of Toucan and allow us to propose to which protein family Toucan may belong.

From sequence analysis, the toucan gene is predicted to encode a 235-kD protein with a coiled-coil domain in the C-terminal region between residues 1565 and 1960 (Grammont et al., 1997). No homologous protein has been found in the databases. There are some significant homologies with many proteins such as pericentrin, vimentin, lamin, myosin, tropomyosin, and kinesin-like proteins. However, such homologies rely essentially on the coiled-coil domain. It is interesting to note that many of these proteins display at least one property reminiscent of Toucan, in particular either a nuclear envelope association or a spindle localization. Because of the presence of the coiled-coil domain, it is possible that Toucan is able to assemble with itself or with other proteins. Moreover, the Toucan protein contains a putative P-loop N-1 motif (GXXXGKTS) and a N-2 motif (NXXSR) present in the nucleotide-binding domains of kinesins and myosins, which suggests that Toucan can bind and hydrolyse ATP or GTP, like motor proteins, and transform this chemical energy into mechanical energy.
First of all, Toucan is associated with the perinuclear matrix, and during mitosis it is tightly localized near the minus ends of microtubules at the spindle poles. In addition, embryos lacking this protein have broad spindle poles, as if microtubules were not tethered together. All these aspects are reminiscent of the NuMA protein characterized in human cells (Tousson et al., 1991; Gagliò et al., 1995; Merdes et al., 1996; Dionne et al., 1999). During interphase, NuMA is mostly a nuclear protein, but it is also found in the centrosome. NuMA redistributes during mitosis to the spindle poles where it forms two crescents (Tousson et al., 1991). The role of NuMA is to form a “collar” at the poles to anchor microtubule minus ends (Dionne et al., 1999). This would allow the stabilization of the poles formed through the action of minus end microtubule motors such as dynein (Karsenti et al., 1996). This could correlate with a role for tethering the microtubules to the centrosomes. Unlike Toucan, however, NuMA is intranuclear and is not found in the central part of the spindle.

The other main feature of Toucan concerns its extremely dynamic redistribution along spindle microtubules and centrosomes. This strongly recalls the behavior of a kinesin-like protein (Endow et al., 1994; Barton et al., 1995; Williams et al., 1997; Adams et al., 1998; Robinson et al., 1999). Because it lacks a characterized motor domain in its sequence, it is reasonable to imagine Toucan as a kinesin-associated protein. It has recently been shown that such kinesin partners not only benefit from the moving capacity of kinesins but also modulate the activity of kinesin through interaction with its cargo-binding tail domain (Coy et al., 1999; Friedman and Vale, 1999; Seiler et al., 2000). When not bound to a cargo, the motor protein is inhibited. In this model, Toucan would be a kinesin cargo able to move along microtubules and also able to control the motor activity of its kinesin partner. Such a KLP-Toucan complex could associate with more than one microtubule at a time, causing focusing of the poles as proposed in the model of Karsenti et al. (1996).

Interestingly, Toucan is also found in the midzone of the mitotic spindle during anaphase. Sharp et al. (1999a) have demonstrated at the ultrastructural level the presence of abundant antiparallel microtubules in the midzone of syncytial spindles of D. melanogaster. This suggests a role for Toucan in the elongation of the spindle, through the sliding of antiparallel arrays of microtubules (McIntosh et al., 1969; Sharp et al., 1999a). The redistribution of Toucan toward the + or − ends of microtubules according to the phases of mitosis could be explained by the association of Toucan with different microtubule motors that possess either a plus or a minus end directionality.

Toucan can thus be discerned as an essential protein involved in the assembly of the mitotic spindle through interactions with both microtubules and kinesins. Future work will be needed to identify proteins interacting with Toucan. Such possible partners could be Ncd (Matthies et al., 1996) or KLP61F (Heck et al., 1993) motor proteins.

The Singularity of the Syncytial Spindles

Several genes have been shown to control the earliest cell cycles in the embryo, indicating that these divisions are regulated in a unique manner (Shamanski and Orr-Weaver, 1991; Lin and Wolffe, 1991; Elfring et al., 1997). These genes encode maternal products required either to inhibit DNA replication in the unfertilized egg, to permit fusion of the male and female pronuclei, or to organize the several thousand mitotic apparatus required for early embryonic development. The Toucan protein is also only required for the early nuclear divisions and is not expressed zygotically in a postblastoderm embryo. This is strikingly different from cyclin B and cdc 25, which are supplied as maternal components for the 13 first divisions but are also zygotically expressed from cycle 14 onward (Edgar et al., 1994). It is surprising that a protein essential for spindle assembly becomes accessory after the cellularized stage. This leads one to suppose that the syncytial spindles have unique requirements and that Toucan is part of a family of specific mitotic regulators (Inoue et al., 2000) that operates only in the early embryo. Until now, the only clear characteristic of the syncytial spindles is their extreme rapidity. Comparisons of syncytial and cellularized mitotic apparatus, either at the optical or ultrastructural levels, do not reveal fundamental differences, except perhaps in the centriole, which appears to have a simpler organization during the syncytial divisions (Moritz et al., 1995; Callaini et al., 1997; Debec and Marcaillou, 1997; Debec et al., 1999; Sharp et al., 1999a). The role of Toucan could be to ensure a prompt remodeling of the microtubular structures, through the activation of kinesins. The high instability of Toucan may allow an accurate control of this process. The peculiar situation of syncytial early development in insects could therefore represent an interesting case of evolutionary selection for factors accelerating mitosis.

MATERIAL AND METHODS

Drosophila Stocks

Control embryos were obtained from the wild-type Oregon-R stock. The enhancer trap line toucanP has been previously described (Grammont et al., 1997). All stocks were maintained on a standard cornmeal/molasses medium at 25°C.

Embryo Staging, Protein Electrophoresis, and Immunoblotting

Embryos were dechorionated, fixed, and stained for DNA and cleared as described (Edgar et al., 1994). Embryos were staged and selected using UV illumination on a microscope, cycle numbers were determined by the number of nuclei present and their position in the egg. Only interphase embryos were selected. Three hand-picked embryos were dissociated in 125 mM Tris-HCl,
pH 6.8, 8 M urea, 4% SDS, 10 mM DTT, 1 mM PMSF. Extracts were boiled 2 min, spun at 20,000 g for 3 min. The supernatants were electrophoresed on a 6% polyacrylamide gel. Gels were transferred to nitrocellulose membranes Optitran BAS 85 (Schleicher and Schuell) for 1 h 30 min at 0.8 mA/cm² in 40 mM Tris-HCl pH 7.4, 20 mM Na-acetate, 2 mM EDTA, 20% methanol, 0.05% SDS (Bolt and Mahoney, 1997). The membrane was probed with anti-Toc antiseraum at a dilution of 1:20,000. A mouse monoclonal antibody (DM1A, Sigma, T-9026) was used to detect α-tubulin at a dilution of 1:50,000. Goat anti-rabbit-HRP (horseradish peroxidase) was used at a 1:10,000 dilution. Immunoreactive protein bands were visualized using chemiluminescence (ECL +, Amersham) according to the manufacturer’s specifications.

Whole-Mount Antibody Staining
Embryos were dechorionated, permeabilized 20–30 s in 100% octane and fixed 3–5 min in 37% formaldehyde according to Theurkauf (1994). The antibody staining procedure was performed as described by Sahut-Barnola et al. (1995). The primary antibody (Grammont et al., 2000) was used at a final dilution of 1:1000. All of the microscopy was carried out on a Zeiss Axiophot equipped with differential interference contrast optics.

Immunofluorescence Staining
Embryos were fixed using methanol by a modification of the Mitchison and Sedat procedure (1983). This method is described in detail elsewhere (Theurkauf, 1992). In some instances the embryos were fixed using a first step of formaldehyde (37%, 5 min). Fixed embryos were labeled with primary antibodies for 1 h and extensively rinsed, then exposed to secondary antibodies for 1 h and rinsed again. All incubations were made in PBTA (PBS with 1% Bovine serum albumin, 0.05% Triton X-100). After a last rinse in PBS, embryos were mounted in a 50% glycerol, PBS solution containing 1 mg/ml N-3-1-4-phenylenediamine. Microtubules were detected with a monoclonal antibody against α-tubulin. The Rb 188 antibody against the centrosome-associated protein CP 190 was a gift from W. Whitfield. Chromosomes are detected either by propidium iodide or with an antihistone monoclonal antibody (MAB052, Chemicon, Temecula, CA).

Microscopy was performed using inverted confocal microscopes (BioRad MRC 600 and Leica TCS-NT).

In Vivo Fluorescence Analysis
Very young (0–1 h collection) embryos laid by toc/toc mothers were microinjected with rhodamine-conjugated tubulin (Molecular Probes). Microinjections were performed as described (Francis-Lang et al., 1995). Observations and time-lapse recording were made on a Leica TCS-NT confocal imaging system. Time series were generated using preset programs in Leica TCS software (xyt mode). For these, images were acquired every 30 s.

ACKNOWLEDGMENTS
We are grateful to W. Whitfield for the gift of Rb 188 antibody and to P. Schmidt for providing MG-132. We acknowledge the excellent technical assistance of V. Calco and D. Cordeiro. We thank V. Miouze and J. Che-nevert for critical reading of the manuscript.

LITERATURE CITED

